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Abstract: A Bayesian optimisation technique was applied to estimate orbital parameters for

the visual double stars Sirius, α Cen, AGC11AB, BU151AB, BU513AB, BU648, BU883AB,

STT38BC, and STF1196AB. These estimates were compared with those adopted by the Wash-

ington Double Star catalog, showing good agreement. This indicates the reliability of the

method, ahead of its planned use for systems with no prior published orbital parameter esti-

mates.

1 Introduction

Visual double stars make interesting subjects for introductory student research projects
in astronomy. The orbits of such stars typically takes decades or longer to complete.
Students therefore could make observations of the relative positions of the pair of stars
in such doubles, adding to similar observations made by previous researchers perhaps
across the generations. An alternative, as in the case of this paper, is to build off the
efforts of such observers and try to make model orbital fits to the data they collected. A
computational project like this allows the student to build up programming and statistical
skills which will bode them well regardless of whether they continue on in astronomical
research or enter industry.

The current paper describes work by a high school student implementing program code
applying optimisation techniques to historical data for 9 systems, building off the work
by Erstenuik et al. (2023) in which more details can be found. A Hamiltonian Markov
Chain (HMC) Monte Carlo optimisation technique was applied. An advantage of using a
Bayesian technique, such as Markov Chain Monte Carlo (MCMC) method like this, com-
pared to point optimisation techniques is that MCMC explores and then characterizes a
distribution by randomly sampling it without requiring knowledge of the distribution’s
mathematical properties. This allows estimation of how well parameter estimates are
defined. Many commonly applied techniques, such as Thieles-Innes (see Alzner 2004), do
not provide such ‘uncertainties’. MCMC optimisation is not as computationally efficient
in reaching point estimates for parameters as some other popular optimisation methods
(such as Levenberg-Marquardt and similar) but instead has the advantage of giving in-
sight into how confident those estimates actually are. Yamada et al. (2022) compared
basic MCMC techniques (such as “random walk Metropolis-Hastings”) with Hamiltonian
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Table 1: Background information on the modeled pairs, taken from the Washington Double Star (WDS)
catalog. Right Ascension (α) is in hours, minutes and seconds, while declination (δ) in degrees, minutes,
and seconds. ‘Obs. Years’ gives the range of the modeled observations in years. ‘Alternative IDs’ give
alternative names as a convenience for later researchers, ‘WDS ID’ is the WDS catalog identification, and
‘constellation’ is self-explanatory.

Star Alternative IDs WDS ID Obs. Years α (J2000)) δ (J2000) Constellation

AGC1AB Sirius, HD48915, HIP32349 06451-1643 1862 - 2021 06 50 08.92 −16 42 58.0 Canis Major

RHD1AB α Cen, HD128620, HIP71683 14396-6050 1752 - 2019 14 39 36.50 −60 50 02.3 Centaurus

AGC11AB ζ Sge, HD187362, HIP97496 19490+1909 1875 - 2010 19 48 58.65 +19 08 31.1 Sagitta

BU151AB β Del, HD196524, HIP101769 20375+1436 1873 - 2018 20 37 32.87 +14 35 42.7 Delphinus

BU513AB 48 Cas, HD12111, HIP9480 02020+7054 1878 - 2013 02 01 57.55 +70 54 25.4 Cassiopeia

BU648AB HD176051, HIP93017 18570+3254 1878 - 2020 18 57 01.61 +32 54 04.6 Lyra

BU883AB HD30810, HIP22550 04512+1104 1879 - 2021 04 51 12.48 +11 04 05.0 Orion

STT38BC γ 02 And, HD12534, HIP9640 02039+4220 1843 - 2021 02 03 53.92 +42 19 47.5 Andromeda

STF1196AB ζ1 Cnc, HD68257, HIP40167 08122+1739 1825 - 2021 08 12 12.79 +17 38 51.2 Cancer

methods, explaining that HMCs generally require shorter Markov chains to reach con-
vergence compared to basic MCMC methods. This is because HMCs leverage gradient
information from the posterior probability distribution function and so are able to tran-
sition long distances in the parameter space while still maintaining a higher acceptance
ratio. They are therefore more efficient. The acceptance ratio is the probability that a
proposed new state in the Markov chain will be accepted as the next state in that chain.
In other words, it determines the probability that the chain adopts a new set of parameter
estimates based on the comparison between the current state and the proposed state’s
likelihood according to the target distribution. Higher acceptance ratios mean that the
chain is more likely to explore wider ranges in the parameter distributions, which can be
important in ‘escaping’ local minima in the optimisation. See Robert & Casella (2009);
Brooks et al. (2011); Gelman et al. (2013) for further information.

The goal of the project was to develop and test using HMC to derive estimates for
orbital parameters, using systems with known solutions. Comparison is made with the
adopted orbital parameter estimates in the Washington Double Star (WDS) catalog (Ma-
son et al., 2001), showing good agreement between the estimates of this paper and WDS.
This lends confidence for future use of the optimization code on data sets with no known
solutions.

Double star measurements are not typically made using Cartesian coordinates and
are reported, such as in the WDS, using the measures of separation and position angle.
The former is the apparent distance between the two stars, while the latter is the angle
between north and an imaginary line from brighter star of the pair to the fainter star in a
counter-clockwise direction (north to east). See Chapter 14 of Smart (1977) for additional
background. In additional to converting the coordinate system, account must be made
for the precession of the Earth. For the current analysis, position angles were precessed
to the year 2000. The formula for the adjustment in the position angle (in degrees) due to
precession is ∆θp = −0.0056 sinα sec δ(t−t0), where α is right ascension, δ is declination, t
the observation epoch, and t0 the desired epoch (formula 6.19 of Cocteau, 1981). We made
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Figure 1: HMC model orbits for Sirius and Alpha Centauri. The model orbits are the red lines, the
primary star is indicated with an asterisk symbol (at the origin), the data points with dots, and the blue
lines connect the observations with their expected position on the model orbit. North is upwards and
east increases to the right, as is the convention in many visual binary papers. The scale of the axes is
identical inside a subfigure. See Table 2 (on page 4) for the values of the parameter estimates and their
units.

use of the stan1 and r2 programming languages to implement the MCMC optimisation
code.

2 Methodology

The orbit of a (visual) binary star system can be described on the xy plane as (Ribas et
al., 2002):

∆x =
a(1− e2)

1 + e cosν
[ cos (ν + ω) sinΩ + sin(ν + ω) cosΩ cos i]

∆y =
a(1− e2)

1 + e cosν
[ cos (ν + ω) cosΩ− sin(ν + ω) sinΩ cos i]

where a is the orbital semi-major axis, e eccentricity, ν true anomaly, i inclination, Ω
longitude of the ascending note, and ω the argument of periapsis. Definition of these
parameters may be found in Chapter 5 of Smart (1977). These equations were used as
the fitting functions for our optimisation code, while least squares (i.e., minimizing the
sum of the squares of the residuals) was used as our measure of goodness of fit (for the
orbit predictions compared to the actual observations). The stan/r code then iterated

1https://mc-stan.org/
2https://cran.r-project.org/
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Table 2: Estimates for the orbital parameters and associated uncertainties for systems for Sirius
(AGC1AB) and α Centauri (RHD1AB). The row immediately below the star names indicates the source
of the estimates: HMC are Hamiltonian Monte Carlo estimates from the current paper, while WDS are
from the Washington Double Star catalog. Angles such as ω, Ω, and i are in degrees. P (orbital period)
and T (epoch) are in years. a is in arcseconds. Errors are single standard deviations.

Parameter Sirius Sirius α Cen α Cen

HMC WDS HMC WDS

P 50.0200± 0.0243 50.128± 0.004 79.91± 0.01 79.9835± 0.0079

a 7.6113± 0.0229 7.4957± 0.0025 17.66± 0.03 17.7695± 0.1091

e 0.5894± 0.0018 0.5914± 0.0037 0.524± 0.001 0.5025± 0.0057

ω 145.907± 0.615 149.161± 0.075 232.3± 0.1 217.899± 0.685

i 134.675± 0.367 136.34± 0.04 79.32± 0.04 79.316± 0.211

Ω 44.273± 0.402 45.400± 0.007 204.75± 0.09 205.301± 0.3296

T 1994.052± 0.071 1994.5715± 0.0058 1955.66± 0.01 1955.730± 0.122

Table 3: Estimates for the orbital parameters and associated uncertainties for the selected systems from
Miller & Pitman (1922), using this paper’s HMC methodology. The column ‘Par’ is short for ‘parameter’.
Units are the same as in Table 2.

Par AGC11AB BU151AB BU513AB BU648AB BU883AB STT38BC STF1196AB

P 23.16± 0.06 26.62± 0.03 60.3± 0.3 61.1± 0.2 16.33± 0.09 60.7± 0.3 59.66± 0.04

a 0.133± 0.007 0.447± 0.006 0.62± 0.02 1.28± 0.01 0.184± 0.006 0.26± 0.01 0.884± 0.005

e 0.87± 0.05 0.35± 0.02 0.31± 0.03 0.26± 0.01 0.46± 0.04 0.89± 0.03 0.337± 0.008

ω 357± 94 195± 4 17± 11 256± 3 263± 93 194± 9 280± 43

i 157± 12 61.5± 0.9 21± 6 114.6± 0.6 0± 15 118± 5 180± 6

Ω 343± 95 359± 1 78± 11 48.0± 0.6 86± 93 103± 5 86± 43

T 1980.2± 0.2 1962.7± 0.2 1963.7± 0.9 1972.6± 0.6 1988.2± 0.2 1951.4± 0.5 1929.6± 0.2

attempting to essentially improve (minimise) the fitting function to reach best fit param-
eter estimates. A series of MCMC steps is called a chain. Chain lengths were typically
several tens of thousands of steps for the modeled systems, allowing good exploration of
the parameter space. The data for the modeled systems was voluminous and covered often
more than a single orbit. This combination made for well defined orbits. We therefore did
not set values for the starting parameters and instead set physical ranges (important for
parameters such as angles which ‘repeat’ after 2π radians) for them instead, allowing the
software to select at ‘random’ the starting estimates. We used uniform priors, indicating a
lack of preference (or prior knowledge) for any value inside each range. Future researchers
working on more sparse data might choose to use methods, such as the Thieles-Innes, to
estimate starting parameters close to a likely global minimum, and perhaps to assume
different prior distributions.

3 Results

We started first with Sirius and α Centauri. These are systems with substantial, high
quality data sets collected over several orbits. The Sirius data cover from 1862.104 to
2021.142, and the α Cen data from 1752.2 to 2019.6505. We did not make an assessment
of the accuracy of the individual measures and attempt to trim to more ‘reliable’ estimates
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Figure 2: Corner Plot for Sirius. Parameters are as in the main text (bar Ω labeled as ‘Omega’ and ω as
‘omega’). Pearson correlation values (‘Corr’) are given in the upper right of the figure, bar charts of the
chain values for each parameter are shown on the diagonal (from top left to bottom right), and scatter
plots showing the chain values for pairs of parameters are shown in the lower left. The figure is based on
8,000 data points from one chain (4 were run), which followed an identical number of prior steps being
discarded as ‘burn-in’. Sigma is an estimate of the random uncertainty in the observational data.

only. Our goal of the project was to test the program code and optimisation technique,
not to necessarily derive the most accurate parameter estimates through judicious con-
sideration and selection of the underlying observations. Such work would make for an
interesting follow-up project.

These two systems were modeled ahead of more difficult “second class” systems from
Miller & Pitman (1922), which were described as then being “stars whose orbits are less
well determined or whose parallaxes have been determined by two or more observers and
the results are discordant”. We have the advantage of approximately a century’s worth
of further observations compared to these earlier authors, who unfortunately did not
include orbital parameter estimates in their paper. Erstenuik et al. (2023) have already
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Figure 3: Corner Plot for BU151AB. Parameters and layout are as in Figure 2. The chart is based on
50,000 steps of one chain. Corner plots of the other studied systems are similar and so in the interests of
space are not included in this paper, this diagram and Figure 2 being representative.

modeled the “first class” systems from Miller & Pitman (1922), explaining our interest
in attempting more difficult systems once we were confident that our modeling technique
was reliable.

Figure 1 (on page 3) shows the model fits to the WDS data for Sirius and α Cen.
Table 2 gives the HMC parameter estimates and uncertainties for the orbital parameters,
along with the estimates adopted by the WDS. Overall there is good agreement between
the HMC and WDS estimates, although at times outside the formal uncertainties. This
gave us confidence that our implementation was operating correctly and we proceeded
on to the more difficult systems. Figure 2 (on page 5) is the ‘corner plot’ of one of the
chains used in the optimisation for Sirius, showing distributions of the parameter values
explored by the chain.

Table 3 lists the parameter estimates and uncertainties for the selected Miller & Pitman
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Figure 4: Comparison between HMC (this paper) and WDS optimal parameter estimates for P , a, e and
ω by system. Linear regressions have been fitted to the data, resulting in best-fit (blue-colored) lines in
the charts. The dashed orange lines are those of perfect agreement. The data points fall close to these
dashed lines, as do the regression lines, showing that there is good agreement between the two sets of
estimates. Due to the larger semi-major axes for α Cen and Sirius, estimates for these two systems were
excluded from Subfigure 4b.
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Figure 5: Comparison between HMC (this paper) and WDS optimal parameter estimates for i and Ω by
system. Format is the same as in Figure 4. Again, agreement is good for parameter estimates between
this study and other researchers.

(1922) systems. Figure 3 is a representative corner plot. Figures 4 and 5 plot the HMC
estimates versus the WDS values, and uncertainties where available, for all the modeled
systems including Sirius and α Cen. The agreement between the HMC results and WDS
is good, as indicated by the high values for the coefficients of variation noted on the
individual charts. Figures 6 and 7 show the best fit model apparent orbits against the
observational data. Despite some systems having widely scattered data, all of the model
orbits appear as reasonable fits to the data sets.

4 Conclusions

This paper provides updated estimates of the orbital elements and their uncertainties for
selected systems taken from the listing of Miller & Pitman (1922), as well as for Sirius and
α Cen. It concludes the testing work commenced by Erstenuik et al. (2023) to apply a
Bayesian optimisation technique to the problem of estimating orbital parameters of visual
double stars. A MCMC-based technique has been shown to produce reliable estimates,
with the advantage of also giving insight into the accuracy of those estimates. Our
estimates align well with the WDS values, although generally the uncertainties from our
HMC-based method are larger (noting that not all the WDS estimates have uncertainties).
These comparisons support the reliability of our HMC-based technique, suggesting it can
be confidently applied to new systems lacking previous orbital parameter estimates.

The project offered a good REU (Research Experience for Undergraduates) topic,
although in this case it was for a high school student. Based on our experience, we rec-
ommend the observation and modelling of visual double star data as a good introduction
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Figure 6: HMC model orbits for AGC11AB, BU151AB, BU513AB, and BU648AB. Layout is the same
as in Figure 1. Where the line (from actual to predicted position) passes through the (or close to the)
origin this could indicate that the incorrect star was taken as the primary during the observation.
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Figure 7: HMC model orbits for BU883AB, STT38BC, and STF1196AB. Layout is the same as in
Figure 6. Axes are on the same scale so as to show the apparent orbits correctly (as they would appear
in the sky).
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to astronomical research for motivated high school and undergraduate students. Not only
will they learn the scientific method, they develop valuable skills such as programming,
presentation, and statistical analysis. Usage of historic data sets can also allow students
to feel connected with ‘history’, the work of earlier generations of astronomers, and if
collecting observational data a sense of contributing to future astronomers.

We plan to employ this methodology in our ongoing survey of multiple star systems and
recommend it to researchers interested in both estimating orbital parameters and assessing
the accuracy of these estimates. Given the increasing number of multiple systems being
discovered, we believe that such orbital calculations are a useful addition to the toolkit
of variable star astronomer. A recent example would be the group’s work about V410
Puppis (Erdem et al., 2022) where the astrometric orbit fit added valuable information
to our understanding of this multi-star system. We hope the orbital parameters and
uncertainties for the presented test systems will be valuable to double star researchers
and serve as a comprehensive record of our methodological validation before applying it
to systems with no prior published orbital parameters or dynamical masses.
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